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Abstract 

The Smart City (SC) framework is popular due to its advancement in enhancing lives and public safety. However, 
these advancements lead to many challenges due to the dependency of Internet of Things (IoT) devices in terms 
of electronic waste and resource consumption. To address those challenges, the integration of a weather-smart grid 
(WSG) with SC becomes crucial to safeguard the environment and residents’ well-being. Along with these concepts, 
this study proposes a novel approach, EcoSense: A Revolution in Urban Air Quality Forecasting for Smart Cities, which 
incorporates Bi-directional Stacked LSTM with a Weather-Smart Grid (BlaSt). BlaSt innovatively integrates several key 
components: (i) the model captures intricate temporal dependencies and trends in air quality data by incorporating 
historical air pollutant and meteorological data. (ii) integration of the WSG component enhances the model’s capabil-
ity to incorporate weather data, which is critical for accurate air quality forecasting. (iii) the model computes 12-hour 
predictions by designing 1-hour prediction models, enabling it to provide timely forecasts with high precision. BlaSt 
demonstrates significant improvements over existing models, with enhancements of 36%, 26%, 21%, 46%, 14%, 
10%, and 6% in accuracy compared to SVR, MLP, RAQP, Vlachogianni, LSTM, BLSTM, and SLSTM models, respectively. 
It achieves a mean absolute error (MAE) of 0.10 and a mean squared error (MSE) of 0.08. Additionally, BlaSt reduces 
computational complexity by 25%, making it more efficient in processing large-scale air quality data. The experimen-
tal results demonstrate BlaSt’s superior accuracy and efficiency, showcasing its potential to advance urban air quality 
forecasting in SCs.
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Introduction
Smart city (SC) frameworks that integrate Internet of 
Things (IoT) devices, like sensors, actuators, etc., have 
improved public safety through data-driven decision-
making and have globally revolutionized urban living 
[1–7]. Seen as smarter, more sustainable, and livable, 
SCs are pivotal in addressing urban challenges, with 
investments projected to reach $135 billion by 2020 [8]. 
Integrating modern technologies and weather smart 
grids (WSGs) inside SCs improves weather forecasting 
accuracy, environmental understanding, disaster pre-
paredness, and urban functionality [9]. To mitigate IoT 
devices’ ecological impact, integrating weather research 
and developing WSGs promise to optimize operations, 
reduce energy consumption, enhance urban resilience, 
and promote sustainability. Additionally, efforts are 
underway to predict and mitigate air pollution’s health 
effects by studying interactions with meteorological 
factors (MFs).

This study is driven by the urgent need for reliable and 
accurate air quality prediction models that can keep up 
with the needs of quickly urbanizing areas. Cities face 
greater hurdles in monitoring and managing air pollu-
tion, necessitating creative solutions that maximize com-
putational resources in addition to providing accurate 
forecasts.

This study addresses these challenges by integrating 
advanced technologies such as Bi-directional Stacked 
LSTM and the Weather-Smart Grid. The proposed model 
is designed to enhance prediction accuracy for urban 
areas while minimizing the computational burden, mak-
ing it suitable for real-time applications in SC infrastruc-
tures. This approach is particularly motivated by the need 
to manage air quality in a sustainable manner, leveraging 
smart grids and ML to provide actionable insights for 
urban planners and policymakers.

Ultimately, this study aims to revolutionize how cities 
approach air quality management, promoting healthier 
living environments and contributing to the global effort 
to combat pollution and its adverse effects.

Promotion of sustainability and air quality openness
Promoting transparency in air quality is just one aspect 
of environmental stewardship that must be heavily prior-
itized in the creation of sustainable SCs. In this process, 
public involvement is essential because it gives citizens 
the ability to take part in monitoring activities and cul-
tivates a sense of shared responsibility. The study by Mak 
& Lam [10] highlights how public involvement in envi-
ronmental monitoring can drive positive outcomes in 
urban sustainability efforts, making it a crucial compo-
nent of SC initiatives.

Climate mitigation on regional air quality
Climate change is intricately linked to air quality, and 
addressing this relationship is vital for SCs. Regional cli-
mate mitigation strategies can significantly influence air 
quality, as seen in the work by Huang et  al. [11], which 
demonstrates the impact of climate interventions on 
reducing pollution levels. The study [12] demonstrates 
improved air quality prediction to support green SCs by 
developing a robust multivariate time series forecasting 
model. This model adeptly captures spatial and temporal 
dependencies in AQI and MFs, highlighting the effec-
tiveness of advanced SLSTM architectures for precise 
environmental monitoring and management. Also, Neo 
et al. [13] provides insights into how public health and air 
quality can be improved through sustainable practices in 
SCs, offering a comprehensive approach to urban envi-
ronmental management. Incorporating such strategies 
into the SC framework can lead to more resilient and 
healthier urban environments.

Despite the advancements, the environmental impact 
of IoT devices and the need for effective air quality man-
agement remain challenges. The integration of weather 
research and the development of WSGs are essential for 
optimizing operations and reducing energy consumption.

This study incorporates the BlaSt model. The BlaSt 
model features: 

1.	 Bi-directional Stacked LSTM: Enhances temporal 
dependency capture and incorporates a weather-
smart grid (WSG).

2.	 Temporal Aggregation and Lagged Features: 
Improves predictive accuracy by approximately 26% 
by capturing temporal patterns at multiple scales.

3.	 Dynamic Feature Selection: Adapts to changing 
conditions by selecting the most required predic-
tive features. The model achieves good prediction 
performance while adjusting to dynamic settings by 
dynamically updating the feature set and evaluating 
feature relevance at various time instants up to 12 h.

4.	 1-hour Prediction Models: Tailored for hourly-based 
predictions.

5.	 Spatiotemporal Correlation Coefficient: Calculates 
internal spatiotemporal correlations among partici-
pating air pollutant concentrations (APCs) and mete-
orological factors (MFs) using the designed ρ metric.

Literature survey
Future air quality prediction is essential for SCs, 
where accurate predictions can guide public health 
and urban management. Gao et  al. [14] discussed the 
advancements in the SC frameworks, mainly focusing 
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on integrating advanced sensors and IoT devices for 
improved urban management. This paper highlights 
how these technologies enhance data collection and 
processing for better environmental monitoring and 
decision-making.

Weng et al. [15] explored the application of ML tech-
niques for SCs air quality prediction. The focus is on lev-
eraging sophisticated algorithms to examine data from 
multiple sources in order to enhance the precision of pre-
dictions and facilitate efficient control of air quality. An 
innovative method for incorporating meteorological data 
into air quality forecasting models was demonstrated in 
this study.

Gao et al. [16] focused on how combining weather data 
with pollutant concentrations can enhance the accuracy 
of predictions and provide more reliable insights for 
urban planning.

Gao et al. [17] reviewed recent developments in trans-
portation systems within SCs, mainly how data-driven 
approaches are utilized to optimize traffic flow and 
reduce pollution. This paper highlights the role of ML in 
improving the efficiency of transportation networks and 
their impact on air quality.

Bi et  al. [18] addressed the challenges of integrating 
public engagement in SC initiatives. It discusses strate-
gies for involving citizens in environmental monitoring 
and decision-making processes, emphasizing the impor-
tance of community participation in enhancing air qual-
ity management.

Qi et  al. [19] examined the innovative methods for 
improving air quality monitoring through big data and 
AI. It focuses on how these technologies can be leveraged 
to enhance the accuracy of air quality measurements and 
provide actionable insights for urban sustainability.

Song & Stettler [20] introduced a Multi-AP learning 
network that estimates multiple air pollutants (PM2.5, 
PM10, O3) at a high spatial resolution across a city using 
data from limited monitoring sites and urban features 
like land use and weather. Applied in Chengdu, the model 
is more accurate and computationally efficient (reduc-
ing time by two-thirds) than traditional methods. Mete-
orological data emerged as the most critical feature in the 
model’s predictions.

Song et  al. [21] proposed Deep-MAPS, an ML-based 
framework for mobile air pollution sensing, designed to 
monitor urban air quality with high spatial-temporal res-
olution. This framework, when implemented in Beijing, 
estimates PM2.5 concentrations with a 1km2 and 1-hour 
resolution, attaining under 15% SMAPE. It does this by 
combining mobile and fixed AQ sensors. Deep-MAPS 
also uses urban big data to identify potential causes of 
pollution, supporting sustainable urban management. 
Additionally, the framework significantly reduces costs, 

saving up to 90% in hardware investment compared to 
traditional fixed-sensor approaches.

Song et  al. [22] proposed the MCST-Tree, a multi-
cascade space-time learning model based on trees that 
is intended for high-resolution inference of air quality 
in metropolitan settings. To estimate pollutant concen-
trations at the grid level, this model takes into account 
data from both stationary and mobile sensors as well as 
a range of urban characteristics, including traffic, popula-
tion, land use, and weather. In a case study of Chengdu, 
the model effectively reconstructed PM2.5 distribution 
maps with sparse data coverage, achieving high accuracy 
(SMAPE = 14.13%; R2 = 0.94). This paper highlights the 
importance of mobile sampling, showing that increased 
mobile data significantly enhances model performance, 
demonstrating the model’s potential for detailed, accu-
rate air pollution mapping.

Chai et  al. [23] focused on predicting bike-sharing 
demand at a grid level in SCs to improve transporta-
tion efficiency. For more precise predictions, the authors 
employ a deep multi-view spatial-temporal network in 
conjunction with a DL methodology in place of conven-
tional time series approaches. This network incorporates 
both spatial and temporal data. The model performs bet-
ter than current machine learning models and runs at a 
grid resolution of 1  km × 1  km, according to thorough 
testing on Beijing bike-sharing data. 6 G is projected to 
further improve these capabilities. Real-time control and 
high-frequency monitoring of bike-sharing patterns are 
made possible by the integration of 4 G/5 G/6 G commu-
nication technologies.

Zhang et al. [24] examined the difficulty of monitoring 
methane (CH4), one of the most potent greenhouse gases, 
in China, the world’s greatest emitter. In this work, the 
distribution of CH4 across East Asia in 2017 was simu-
lated using the Weather Research and Forecasting (WRF) 
model in conjunction with satellite data and a greenhouse 
gas module. Ground-based and satellite-based data are 
used to verify the correctness of the model. In order to 
monitor CH4, the researchers also compared four sensor 
placement algorithms. They discovered that the QR pivot 
algorithm is the most efficient, especially in areas with 
high concentrations of CH4. Gaps in the current moni-
toring efforts are highlighted in the research. It implies 
that the QR pivot algorithm, when used to strategically 
place 160 sensors, could increase monitoring efficiency 
and accuracy. These findings could be helpful for future 
CH4 monitoring site planning in China.

Zaini et  al. [25] review DL approaches, highlighting 
models like Convolutional Neural Networks (CNNs) 
and RNNs for their ability to capture complex patterns 
in environmental data. Huang et  al. [26] introduced a 
Spatiotemporal Attention-Based RNN Network, which 
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improves accuracy by focusing on relevant time steps and 
spatial locations. Cai et  al. [27] emphasized the fusion 
of diverse data sources to enhance predictions, aligning 
with our model’s approach.

Advantages and disadvantages of existing methods
ANNs are effective for classifying pollutant concentra-
tions [28, 29], providing valuable insights into current 
air quality levels. However, they often lack temporal 
modeling capabilities, which are crucial for forecasting. 
Time-series data forecasting is a good fit for recurrent 
neural networks (RNNs) [30]. However, RNNs may have 
trouble identifying long-term dependencies, which can 
reduce their predicted accuracy over long time horizons. 
The Multi-AP Learning Network, introduced by Song & 
Stettler [20], offers high accuracy and computational effi-
ciency for predicting multiple pollutants but is limited by 
its dependence on existing monitoring sites, which may 
not provide comprehensive coverage. The Deep-MAPS 
Framework [21] excels in high spatial-temporal resolu-
tion and cost savings for air quality monitoring but faces 
constraints related to the spatial distribution of sensors, 
which may affect its coverage. The MCST-Tree Model 
[22] delivers detailed pollution mapping with high accu-
racy but relies heavily on the availability of mobile data, 
which may not always be sufficient. The strategy used 
by Chai et  al. [23], which predicts bike-sharing demand 
using a deep multi-view spatial-temporal network, works 
well in transportation contexts but does not specifically 
address air quality forecasts. Finally, the methane mon-
itoring models developed by Zhang et  al. [24] focus on 
greenhouse gas emissions with advanced simulation and 
sensor placement techniques but are specific to methane 
rather than providing a broader air quality assessment.

Proposed BlaSt model’s novel contributions
The BlaSt model distinguishes itself by integrating bidi-
rectional stacked LSTM layers with a WSG. This com-
bination overcomes the drawbacks of conventional 
techniques like Support support vector regression (SVR) 
[31], multilayer perceptron (MLP) [32], etc. by improving 
temporal dependency capturing and utilizing the mete-
orological data. The BlaSt model demonstrates superior 
performance in handling complex, multimodal datasets, 
offering enhanced accuracy and adaptive decision-mak-
ing capabilities essential for SCs.

Research perspective
We started our research with the perspective that inte-
grating advanced DL techniques and weather data could 
significantly improve urban air quality forecasting. This 
approach aims to bridge gaps left by existing methods, 

providing a more comprehensive and adaptable solution 
to the challenges of air quality prediction in SCs.

Model architecture & problem formulation
Modlel architecture of BlaSt
The goal of the BlaSt model architecture is to better man-
age SC resources and respond to weather-related diffi-
culties by combining the WSG with the conventional SC 
framework. The architecture of BlaSt depicted in Fig. 1, 
represents a comprehensive approach to urban air quality 
forecasting.

The decision to use 12 1-hour Prediction Models within 
the BlaSt model was reached through extensive empirical 
experimentation described in Table 1. This configuration 
was found to provide the best balance between model 
complexity and performance, effectively capturing tem-
poral dependencies and patterns in the air quality data 
without leading to overfitting. Furthermore, the use of 12 
units aligns with the 12-hour prediction window, ensur-
ing the model effectively captures the temporal dynamics 
necessary for accurate air quality forecasts.

Regarding the number of 1-hour Prediction Models, 
as detailed in Table 1, it is evident that the accuracy and 
consistency of the BlaSt model improve when the num-
ber of 1-hour Prediction Models increases. However, the 
benefits plateau after reaching 12 units, beyond which 
additional 1-hour Prediction Models yield diminishing 
returns while increasing computational complexity. Thus, 
choosing 12 units represents an optimal balance, maxi-
mizing accuracy while maintaining manageable resource 
demands.

Therefore, the BlaSt model’s system architecture is 
carefully designed to meet the challenges of urban air 
quality forecasting, integrating advanced methods and 
strategic choices to optimize both performance and 
resource efficiency. This detailed approach underpins the 
effectiveness of the BlaSt model within the broader SC 
framework.

Problem formulation
This study has the following objectives: 

1.	 To maximize prediction accuracy by integrating 
weather data into the BlaSt model for enhanced air 
quality predictions in SCs.

2.	 Minimize prediction uncertainty by reducing the 
prediction interval width.

3.	 Minimize computational cost by decreasing both 
training and inference times, and minimize energy 
costs in WSG integration by optimizing energy con-
sumption predictions over time t=12 h.

Therefore, the objectives are stated as follows: 
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1.	 Maximum Air Quality Forecasting Accuracy 
( Maxacc ): 

 Here, the BlaSt model is enhanced with weather 
data for enhancing the SCs air quality forecasting 
accuracy.

2.	 Minimal Forecasting Uncertainty ( Minun ): 

3.	 Minimize Computational Cost ( MinCC ): 

(1)Maxacc =
Number of Correct Forecasts

Total Number of Forecasts

(2)Minun = Min
(

Forecasting Interval Width
)

(3)
MinCC = Min Training Time+Min Inference Time

4.	 Minimal Energy Cost with WSG Integration 
( MinEC ): 

 Here, Costt denotes the energy cost at time t, while 
Consumptiont denotes the energy consumption at 
time t that the model predicts.

	 Also, in this study, low computational cost implies 
the efficient use of resources by minimizing both 
the training time and inference time of the proposed 
BlaSt model. This indicates that the BlaSt model is 
better suited for real-time applications in SCs where 
resource efficiency is crucial since it is made to pro-
duce accurate predictions while consuming less time 
and computing power.

(4)MinEC = Min

(

T
∑

t=1

Costt · Consumptiont

)
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Fig. 1  Model Architecture of BlaSt. Here, MinMaxScaler scales features to a 0–1 range, aiding LSTM neural networks by ensuring consistent input 
feature scaling for better convergence and performance. linear interpolation is used to smoothly estimate missing data, preserving time series 
integrity by considering trends in adjacent points. Also, the choice of 12 LSTM units in the model is based on a balance between complexity 
and performance. This specific number was determined through empirical experimentation, where we found that 12 units provided sufficient 
capacity to capture the temporal dependencies and patterns in the air quality data without leading to overfitting. Additionally, 12 units aligns 
with the 12 time step resolution we are working with, ensuring that the model effectively captures the necessary temporal dynamics for accurate 
predictions
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Dataset
Formation of the required dataset
We utilized the CityPlus SC Dataset [33] to assess pollu-
tion, weather, etc. using data from 2015 to 2020. These 
datasets, which focus on weather and pollution, provide 
hourly and daily APC and MF measures from sensors 
throughout various Indian cities. Each dataset is around 
4 GB in size.

Analysis of spatiotemporal‑correlation
The proposed BlaSt model considers the intrinsic spati-
otemporal linkages among the included APCs and their 
interactions with MFs to produce an extremely accurate 
and precise air quality forecasting model. Identifying 
these relationships is a crucial first step before train-
ing since it directs the model in choosing the best set of 
inputs. Integrating APCs with pertinent MFs and elimi-
nating non-essential MFs lowers the computational load. 
The spatiotemporal relationships between each APC and 
the target MFs are then calculated.

Here, data samples are denoted by s, the internal spati-
otemporal correlation coefficient is represented by ρ , 
and the time-series sequential historical input vectors 
Ki and Bi are employed in the model to find patterns 

(5)

ρ =
s
∑s

i=1(Ki ∗ Bi)− (
∑s

i=1 Ki +
∑s

i=1 Bi)
√

s
∑s

i=1 K
2
i − (

∑s
i=1 Ki)

2
√

s
∑s

i=1 B
2
i − (

∑s
i=1 Bi)

2

and trends for multivariate AQI forecasting. These vec-
tors are derived from the historical data, capturing rel-
evant features that contribute to predicting future AQI 
values. Specifically, Ki , and Bi are obtained through the 
preprocessing of historical data, representing the key 
components in determining the internal spatiotempo-
ral correlation coefficient ρ . The symbol ∗ represents the 
convolution operator.

BlaSt model
BlaSt is structured using a III-phase architecture, as illus-
trated in Fig.  1. Phase-I describes the integration of the 
WSG with the conventional SC framework. The BSLSTM 
NN construction is done during phase-II. Phase-III is 
responsible for designing the 1-hour prediction models, 
and finalizing the training of BlaSt for producing the 
forecasted results.

Traditional SC framework
The SC framework is a ground-breaking method of urban 
management that uses data-driven insights and state-of-the-
art technologies to enhance the quality of life for citizens. 
Fundamentally, the SC framework integrates data from 
multiple sources, including energy grids, public services, 
transportation networks, and environmental sensors, to 
build more sustainable, efficient, and livable urban settings. 
These data streams give municipal planners and administra-
tors up-to-date information on trash management, energy 
consumption, public safety, traffic patterns, and air quality, 
allowing them to make well-informed decisions.

The framework processes a wide range of data types, 
including air pollution levels, weather conditions, traffic 
congestion, energy usage, and even social media activity. 
This information is collected from IoT devices, satellites, 
and other digital infrastructures embedded within the 
urban fabric. By analyzing these diverse datasets, the SC 
framework can predict trends, optimize resource alloca-
tion, and respond to emerging challenges in real-time.

In urban management, the SC framework plays a cru-
cial role by facilitating smart governance, improving pub-
lic services, and fostering sustainable development. It 
enables cities to monitor environmental conditions, man-
age resources efficiently, reduce carbon footprints, and 
enhance public safety. Additionally, the SC framework 
facilitates the development of more flexible and resilient 
urban environments that can address both short-term 
demands and long-term strategic objectives. By taking 
a comprehensive approach, SCs can better handle the 
challenges of contemporary urban life and guarantee a 
greater standard of living for all citizens.

Table 1  Required 1-hr Prediction Models for the Development 
BlaSt 

Bold values indicate the efficiency as well as the superior performance of our 
proposed model

Units of 1-hr Prediction 
Models

Accuracy (%) Consistency (%)

1 40 30

2 55 45

3 68 58

4 80 75

5 92 88

6 93.5 90

7 94 91

8 95 92

9 95.95 92.36

10 96.5 93

11 96.68 93

12 98.59 94.28
13 99 90

14 99.23 90

15 99.23 90
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WSG integration with SC framework
Algorithm 1  Integration Process of the WSG.

Integrating WSG with the SC architecture takes lots of 
steps and careful considerations. The WSG was created 
to increase the SC’s ability to use MFs more efficiently, 
allowing for more informed choices to be made about 
energy management, preparedness for emergencies, 
and thorough urban planning. Algorithm  1 provides 
specifics on integrating the WSG into the conventional 
SC framework. Also, this integration is done through 
a systematic procedure intended to improve the city’s 
capacities for energy management, emergency prepar-
edness, and urban planning. The way the integration 
algorithm functions is as follows: 

1.	 Initialization: Start by setting up the SC framework 
with the necessary parameters and configurations 
tailored for integration with the WSG.

2.	 Data Integration: Integrate the weather data into 
the SC framework. This integration helps optimize 
grid operations by adjusting parameters and control 
actions based on the latest weather conditions.

3.	 Control Actions Update: Update the control actions 
for grid devices, such as generators and transformers, 
to reflect the integrated weather data and optimize 
performance.

4.	 Performance Monitoring: Regularly monitor the 
grid’s performance and stability to ensure that the 
integration is functioning as expected.

5.	 Parameter Adjustment: Update the SC framework 
parameters as needed based on the integrated data to 
continuously refine and improve grid operations.

6.	 Finalization: Once the integration is complete and 
the system is optimized, finalize the integrated sys-
tem to maintain operational efficiency.

Therefore, Algorithm 1 ensures that the WSG is effec-
tively integrated into the SC framework, allowing for 
improved decision-making and operational efficiency 
in managing urban infrastructure and resources.

Bi‑directional stacking mechanism of the traditional LSTM 
neural network (BSLSTM NN)
The BLSTM NN, crafted to predict future air quality in 
SCs, integrates bidirectional processing with multiple 
stacked LSTM layers to improve prediction accuracy. 
Processing MF and historical APC data in both back-
ward (from the future to the past) and forward (from 
the past to the future) directions work in SCs to capture 
intricate temporal relationships and patterns of air qual-
ity. By Equations (6) and (7), Backward LSTM processes 
data from the future to the past, capturing context for the 
future, and Forward LSTM processes data from the past 
to the future, capturing temporal dependencies.

Here, x denotes the input at time t, 
←−
ht  and 

−→
ht  and the 

hidden states in the forward (from past to future) and 
backward (from future to past) directions, respectively. 
For layer l, the hidden states are denoted by h(l)t  . The 

(6)−→
ht =LSTM(xt ,

−−→
ht−1)

(7)←−
ht =LSTM(xt ,

←−−
ht+1)
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next LSTM layers then merge these bidirectional hidden 
states.

Equation  (8) describes the predictive capacity of the 
BlaSt model, which is enhanced by the BLSTM stacking 
process that combines many LSTM layers that have been 
tuned by preceding layers. This allows the BLSTM to cap-
ture nuances and higher-level features in the data.

Here, h(l+1)
t  represents the hidden states at the next layer 

l + 1 after applying the BLSTM layer.
In addition to improving prediction performance, this 

stacking helps the BlaSt model catch more subtleties, 
higher-level features, and methodological depth in the 
data. 

1.	 Incorporate Additional Features: Enhance the input 
data by integrating more relevant features such as 
additional MFs and external used datasets [33]. This 
can provide a more comprehensive view of the fac-
tors influencing air quality.

2.	 Optimize Hyperparameters: To enhance the model’s 
performance, the required hyperparameters configu-
ration is listed in Table 2.

3.	 Advanced Regularization Technique: Apply drop-
out to prevent overfitting and ensure the model gen-
eralizes well to new data.

4.	 Implement Data Augmentation: Increase the 
robustness of the model by noise injection to diver-
sify the training data.

1‑hr prediction models
Each 1-hour prediction model is developed by using 

1.	 Hourly basis recurrent heuristic rules,

(8)h
(l+1)
t = BLSTM(l+1)(h

(l)
t )

2.	 Inserting outliers generated through random sam-
pling of the designed dataset.

At time t=0, the Base 1-hour prediction model is created 
using 

1.	 Outliers,
2.	 Initial Features, and
3.	 Label0.

Following this, the remaining 12 units of 1-hour predic-
tion models are constructed recursively, with each pre-
ceding 1-hour prediction model passing its output to 
the subsequent subordinate 1-hour prediction model, as 
described in Equations (9), (10), and (11).

Here, the hidden state ht is the output of the BSLSTM 
at time t. It includes the input data xt , the previous hid-
den state ht−1 at time t − 1 , and the information obtained 
from the cell state ct . This hidden state contains the tem-
poral features and patterns that the LSTM unit extracted 
and that indicate the model’s understanding of the 
sequence up to time t. It retains the context and tempo-
ral connections that were learned from earlier time steps, 
which is essential for forecasting. The created BSLSTM 
NN, which modifies the hidden state, is represented 
by the function BSLSTM(). Simultaneously, the dense 
layer that generates the anticipated output yt at time t 
is Dense(). For the purpose of making predictions, such 
predicting future air quality values, this output shows 

(9)H =ht = BSLSTM(ht−1, xt , ct)

(10)Y =yt = Dense(ht)

(11)ro =

k
∑

i=1

(Yk +Hk)

Table 2  Hyperparameters Configuration

Hyperparameter Description Value

Number of LSTM Layers Number of stacked LSTM layers in the model 25

Number of Units per Layer Number of LSTM units per layer 25

Batch Size Number of samples per gradient update 64

Learning Rate Step size for weight updates 0.01

Dropout Rate Fraction of input units to drop during training 0.03

Recurrent Dropout Rate Fraction of recurrent units to drop during training 0.05

Sequence Length Number of time steps in each input sequence 12

Optimizer Algorithm used to optimize the loss function Adam

Activation Function Function used to introduce non-linearity Softmax
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how the model interprets the hidden state. ro represents 
the recurrent output.

Therefore, the hidden state ht in Equations  (9) and 
(10) implicate the internal representation of the input 
data at time t, encoding the temporal context and pat-
terns learned by the BlaSt model, which is then used 
to produce the final predictions. Also, the recur-
rent nature described in Equation  (11) summarizes 
the functionality of the 1-hour prediction model and 
is shown in Equations  (9) and (10). These formulas 
ensure that the input data xt , the previous hidden state 
ht−1 , and any relevant contextual information ct are 
factored in order to update the hidden state ht at time 
t. After that, the output yt is generated using the modi-
fied hidden state.

Formulation of the 1‑hour prediction model
The construction of the 1-hour prediction model follows a 
formulated rule expressed in Equation (12). Additionally, 
error computation is governed by Equation (13).

Note, (i) In Equation (13), the term Errort represents the 
absolute difference between the actual value xt at time t 
and the predicted value xt+1 at time t + 1 . Specifically, 
Equation  (12) expresses the prediction model where, 
xt+1 is the forecasted value, α is the autoregressive coef-
ficient (a value between 0 and 1), xt is the actual value at 
time t, and ǫt+1 is the prediction error at time t + 1 . (ii) 
Equation  (13) measures the absolute error between the 
actual value xt and the predicted value xt+1 . (iii) Thus, the 
prediction error at time t + 1 , denoted as ǫt+1 in Equa-
tion  (12), is not directly represented by Errort in Equa-
tion  (13). Instead, Errort represents the magnitude of 
the prediction error made at time t when comparing the 
actual value at t to the predicted value for the subsequent 
time t + 1 . The term ǫt+1 is part of the prediction model, 
and the absolute difference Errort quantifies how far off 
the prediction was from the actual value.

The BlaSt model also encompasses error calculation 
and the computation of total APCs emissions and their 
atmospheric dispersion described in Equations  (14), 
and (15), respectively.

(12)xt+1 =αxt + ǫt+1

(13)Errort =|xt − xt+1|

(14)Emissiontotal(Emitotal) =

n
∑

i=1

EFi × ALi

Here, EFi represents the emission factor for pollution 
source i. ALi defines the activity level of pollution source 
i.

Here, the horizontal distance from the source is shown 
by y, while the vertical distance is indicated by z. The 
horizontal and vertical dispersion parameters are defined 
by σy and σz . The horizontal and vertical distances of the 
receptor location are denoted by yReceptor and zReceptor , 
respectively.

Feature engineering and fusion
The process of feature engineering for the BSLSTM 
framework include selecting pertinent characteristics 
from several modalities, such as meteorological varia-
bles and past air quality data. Consistent scaling across 
modalities is ensured by normalization and scaling 
(Equation  (16)). Temporal aggregation (Equation  (17)) 
captures dependencies by aggregating historical obser-
vations. Lagged features (Equation (18)) represent past 
conditions, while weighted fusion methods (Equa-
tion (19)) combine modalities, preserving their unique 
traits.

Here, x is the original feature, µ is the mean, and σ is the 
standard deviation.

Here, Xagg is the aggregated feature and xi are the 
observations.

Here, xt−l represents the feature value at time t that is 
lagged by l time steps, where Xaggt−l

 is the actual feature 
value observed at time t − l . Therefore, Equation  (18) 
indicates how past values of a feature are used in mod-
eling current or future values.

Here, xt−i represents the feature at time step t − i , and 
wi are the weights for each time step, with 

∑l
i=1 wi = 1 . 

This approach combines both temporal aggregation 

(15)

Conc =
Emitotal

2πσyσz
exp

(

−
(y− yReceptor)

2

2σ 2
y

−
(z − zReceptor)

2

2σ 2
z

)

(16)x′ =
x − µ

σ

(17)Xagg =
1

n

n
∑

i=1

xi

(18)xt−l = Xaggt−l

(19)xfused =

l
∑

i=1

wixt−i
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and modality fusion, potentially enhancing the model’s 
performance.

Experimental design
Experimental targets
The experiments aimed to evaluate the BlaSt model’s 
performance in predicting air quality under different data 
scenarios. The targets were: 

1.	 Assessing the model’s flexibility with respect to dif-
ferent data types and amounts.

2.	 Evaluating predictive accuracy and efficiency with 
different dataset configurations.

3.	 Comparing performance across multiple models and 
configurations to demonstrate BlaSt’s superiority.

Data preparation
The designed dataset was divided into three distinct 
subsets: training, testing, and validation. 

1.	 Training Set (80%): utilized to demonstrate the BlaSt 
model.

2.	 Testing Set (10%): Evaluated the prediction accu-
racy of the BlaSt model by testing its performance on 
hypothetical data.

3.	 Validation Set (10%): Used in order to prevent over-
fitting and optimize hyperparameters during the 
BlaSt model building phase.

Experiments
Three experiments were conducted to evaluate the 
BlaSt model’s adaptability under different data scenar-
ios and its predictive capability. The experiments varied 
in data quantity and quality: 

1.	 Experiment 1: Used a moderate dataset (i.e., approxi-
mately 300,000 data samples) with missing values to 
test the BlaSt model’s effectiveness under standard 
conditions.

2.	 Experiment 2: Employed a large dataset (i.e., approxi-
mately 500,000 data samples) without missing values 
to assess the BlaSt model’s time efficiency and per-
formance with significant data volumes.

3.	 Experiment 3: Organized the training and testing 
datasets (i.e., approximately 700,000 data samples) 

chronologically to evaluate the BlaSt model’s practi-
cal ability to predict future data trends.

Experiments 1 and 2 used historical data with random 
selection of training and prediction datasets, while 
Experiment 3 utilized a time series approach for large 
datasets.

Comparison methodology
The support vector regression (SVR) [31], multilayer 
perceptron (MLP) [32], recurrent air quality predictor 
(RAQP) [34], vlachogianni [4], long short-term memory 
(LSTM) [35], bi-directional long short-term memory 
(BLSTM) [36], and stacked long short-term memory 
(SLSTM) [37] were the models against which the perfor-
mance of the BlaSt model was compared. Multiple evalu-
ation metrics served as the basis for the comparisons.

Evaluation metrics

1.	 ROC (Receiver Operating Characteristic) and PR 
(Precision-Recall) Curves [38, 39]: The ROC and PR 
curves are adopted for statistical evaluation because 
they offer valuable insights into the model’s perfor-
mance, especially in imbalanced datasets, which are 
common in spatial-temporal assessments. 

(a)	 ROC Curve: The True Positive Rate (TPR) 
against False Positive Rate (FPR) at various 
thresholds is plotted on the ROC curve. It 
provides a sensitivity versus specificity score, 
which is helpful in assessing how well the 
model separates into classes. Higher values 
indicate stronger classification abilities. The 
Area Under the ROC Curve (AUC) is a crucial 
measure of overall model performance.

(b)	 PR Curve: When utilizing imbalanced data 
where one class is significantly more abundant 
than the other-the PR curve, which graphs 
Precision against Recall, is especially help-
ful. It focuses on how well the model predicts 
the minority class, which is frequently of more 
importance. Determining the optimal thresh-
old for classification is aided by the PR curve, 
which illustrates the trade-off between preci-
sion and recall.

	 Therefore, a more thorough assessment of the 
model’s performance is obtained by utiliz-
ing both ROC and PR curves, which enables 
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improved decision-making in spatial-tempo-
ral assessments where maintaining a balance 
between false positives and false negatives is 
crucial.

2.	 Loss Computation

(a)	 Mean Squared Error (MSE): Measures the 
mean squared difference between the expected 
and actual values. MSE values below.001 sug-
gest higher accuracy.

(b)	 Mean Absolute Error (MAE): Calculates the 
mean size of the forecast errors. Higher fore-
cast accuracy is reflected in a lower MAE.

Performance evaluation
The designed dataset was randomly divided for a thor-
ough evaluation of the 1-hour Prediction Models, with 
30 iterations conducted to ensure the robustness and 
reliability of the BlaSt model’s performance. This pro-
cess helps for variability and minimizes the impact of 
any single random split, resulting in more consistent 
and generalizable outcomes as detailed in Table 3.

Experimental results analysis & discussion
The proposed BlaSt model achieved superior TPR, FPR, 
and TNR metrics, reflecting its robust evaluation and 
integration with WSG with SC framework. Compared 
to seven existing models like SVR [31], MLP [32], RAQP 
[34], Vlachogianni [4], LSTM [35], BLSTM [36], and 
SLSTM [37] the BlaSt demonstrated significant accuracy 
improvements across experiments 1, 2, and 3, as shown 
in Figs. 2a–c, 3a–c.

The PR curves in Fig.  3 represent the relationship 
between precision and recall for each experiment, high-
lighting the BlaSt model’s performance in correctly 
identifying positive instances. Technically, these curves 

Table 3  Rationale for Selecting 30 Iterations in Model Evaluation

Number of 
iterations

Computational cost Statistical reliability

20 Lower Moderate

30 Balanced High

40 Higher Slightly Higher

50 Significantly Higher Marginally Higher

Fig. 2  ROC curve for (a) Experiment 1. (b) Experiment 2. (c) Experiment 3

Fig. 3  PR curve for (a) Experiment 1. (b) Experiment 2. (c) Experiment 3
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illustrate how well the BlaSt model strikes a compromise 
between recall-the capacity to catch all pertinent positive 
instances-and precision-the accuracy of positive predic-
tions-across a range of threshold values. Additionally, 

even when the dataset is imbalanced, a bigger area under 
the PR curve suggests that the BlaSt model achieves high 
recall while maintaining high precision. This means the 
BlaSt model is effective at detecting true positives with 

Fig. 4  (a) MSE and (b) MAE of the Proposed BlaSt Model

Fig. 5  SCs Future Air Quality Forecasting using the BlaSt Model in terms of the Future Concentration of PM2.5, CO, and NO2
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fewer false positives, which is crucial for reliable air qual-
ity predictions in SCs. Thus, these results show the BlaSt 
model’s superior ability to predict air quality in SCs, 
effectively mitigating challenges such as error accumu-
lation and weakening spatiotemporal correlations over 
time.

The MSE and MAE losses of the BlaSt model are pre-
sented in Figs. 4a, b.

Our proposed BlaSt model is used to anticipate future 
air quality in SC, as shown in Fig. 5.

Figure 5, we observed the followings: 

1.	 Trend Analysis: The charts reveal trends and pat-
terns in PM2.5, CO, and NO2 levels over time. Ana-
lyzing these trends helps in understanding pollutant 
concentration fluctuations and potential sources.

2.	 Peak Analysis: Identifying peak values and their tim-
ings can highlight critical pollution events and cor-
relate them with specific activities and environmental 
conditions.

3.	 Seasonal Variation: Seasonal patterns are observed, 
indicating variations in pollutant levels due to sea-

sonal changes, weather conditions, or human activi-
ties.

Tables  4, 5, 6, and 7 provide a comprehensive com-
parison, highlighting the performance improvements 
achieved by BlaSt across various evaluation metrics.

Conclusion
The study introduces the BlaSt model, a pioneering air 
quality prediction approach in SCs, demonstrating sub-
stantial advancements through innovative methodologies 
and advanced techniques. It incorporates WSG, APCs, 
and MFs to improve accuracy and integrates a bi-direc-
tional stacking mechanism within the SC framework. 
BlaSt integrates diverse data sources through multi-
modal data fusion, capturing complex spatiotemporal 
relationships effectively while maintaining each modal-
ity’s unique characteristics. BlaSt effectively captures 
temporal dependencies and trends by combining tem-
poral aggregation, lagged characteristics, and dynamic 
selection. This ensures strong predictive performance 
even under changing conditions. Spatial relationships are 

Table 4  Comparison of Accuracy between SVR [31], MLP [32], RAQP [34], Vlachogianni (Vlacho) [4], LSTM [35], BLSTM [36], SLSTM [37], 
and the proposed BlaSt Models

Bold values indicate the efficiency as well as the superior performance of our proposed model

APCs Method 1hr 2hr 3hr 4hr 5hr 6hr 7hr 8hr 9hr 10hr 11hr 12hr

PM2.5 SVR 0.949 0.890 0.859 0.789 0.759 0.731 0.717 0.707 0.699 0.695 0.690 0.680

MLP 0.958 0.910 0.890 0.886 0.805 0.778 0.748 0.739 0.723 0.715 0.699 0.690

RAQP 0.933 0.925 0.912 0.903 0.880 0.880 0.862 0.775 0.740 0.739 0.725 0.712

Vlacho 0.867 0.828 0.792 0.770 0.748 0.719 0.651 0.636 0.621 0.615 0.605 0.590

LSTM 0.938 0.928 0.919 0.890 0.860 0.832 0.803 0.791 0.770 0.718 0.712 0.700

BLSTM 0.918 0.903 0.899 0.898 0.859 0.835 0.825 0.770 0.739 0.718 0.713 0.705

SLSTM 0.969 0.965 0.935 0.912 0.883 0.853 0.833 0.815 0.790 0.758 0.750 0.721

BlaSt 0.995 0.985 0.920 0.900 0.900 0.890 0.888 0.868 0.856 0.857 0.835 0.829
NO2 SVR 0.930 0.925 0.910 0.898 0.893 0.883 0.873 0.867 0.853 0.808 0.797 0.788

MLP 0.935 0.870 0.848 0.842 0.809 0.785 0.769 0.759 0.729 0.710 0.700 0.693

RAQP 0.966 0.952 0.938 0.910 0.894 0.877 0.862 0.838 0.799 0.788 0.758 0.708

Vlacho 0.888 0.859 0.850 0.845 0.833 0.812 0.802 0.795 0.759 0.730 0.723 0.713

LSTM 0.962 0.956 0.945 0.915 0.887 0.866 0.852 0.790 0.770 0.761 0.747 0.728

BLSTM 0.987 0.964 0.940 0.915 0.894 0.865 0.847 0.810 0.799 0.770 0.756 0.728

SLSTM 0.980 0.978 0.960 0.935 0.893 0.846 0.842 0.820 0.799 0.770 0.757 0.740

BlaSt 0.995 0.990 0.892 0.898 0.897 0.869 0.860 0.849 0.845 0.839 0.839 0.830
CO SVR 0.935 0.890 0.889 0.864 0.844 0.818 0.788 0.772 0.760 0.703 0.688 0.680

MLP 0.955 0.950 0.940 0.885 0.868 0.838 0.808 0.782 0.765 0.742 0.735 0.723

RAQP 0.962 0.943 0.910 0.895 0.883 0.863 0.847 0.829 0.812 0.784 0.760 0.748

Vlacho 0.870 0.869 0.865 0.860 0.859 0.847 0.839 0.821 0.813 0.802 0.790 0.782

LSTM 0.975 0.944 0.910 0.863 0.853 0.830 0.797 0.760 0.733 0.730 0.727 0.713

BLSTM 0.991 0.964 0.940 0.908 0.894 0.866 0.827 0.810 0.790 0.770 0.747 0.718

SLSTM 0.992 0.957 0.938 0.910 0.868 0.849 0.827 0.795 0.765 0.735 0.727 0.710

BlaSt 0.996 0.968 0.925 0.907 0.899 0.885 0.879 0.869 0.859 0.849 0.839 0.835
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captured via spatial embeddings, considering localized 
variations and correlations. Through 1-hour Prediction 
Models, real-time decision-making is made possible by 
enhanced sensitivity to environmental influences thanks 
to domain-specific information and customized fea-
ture engineering. Evaluation using the Spatiotemporal 
Correlation Coefficient metric ( ρ ) confirms the model’s 
strength, with comparative experiments demonstrat-
ing its superiority over existing methods like SVR, MLP, 
RAQP, and the Vlachogianni model, resulting in signifi-
cant improvements in predictive metrics.

Limitation
The primary limitation of the BlaSt model is that, because 
of its reliance on non-linear characteristics of APCs and 
MFs, it ignores chemical reactions and unavoidable natu-
ral disasters like acid rain. However, the absence of rele-
vant data significantly impacts the BlaSt model’s capacity 
to address these factors in air quality prediction. Thus, 
the potential ways to address these limitations are stated 
as follows: 

1.	 Integration of New Data Sources: Future research 
could focus on integrating datasets that include 
chemical reactions (e.g., formation of secondary pol-
lutants like ozone) and data related to natural calami-
ties (e.g., acid rain, dust storms, wildfires). These 
datasets could be sourced from environmental moni-
toring agencies, satellite data, or predictive simula-
tions.

2.	 Development of Hybrid Models: To improve the 
model’s accuracy in scenarios involving chemical 
reactions and natural calamities, we propose the 
development of hybrid models that combine the 
strengths of the BlaSt model with additional mod-
ules specifically designed to handle these factors. For 
example, incorporating a chemical transport model 
(CTM) could simulate chemical reactions, while 
integrating meteorological models could predict the 
impact of natural calamities on air quality.

3.	 Collaboration with Environmental Scientists: Col-
laborating with experts in atmospheric chemistry 
and environmental science could provide deeper 

Table 5  Comparison of Recall between SVR [31], MLP [32], RAQP [34], Vlachogianni (Vlacho) [4], LSTM [35], BLSTM [36], SLSTM [37], and 
the proposed BlaSt Models

Bold values indicate the efficiency as well as the superior performance of our proposed model

APCs Method 1hr 2hr 3hr 4hr 5hr 6hr 7hr 8hr 9hr 10hr 11hr 12hr

PM2.5 SVR 0.942 0.888 0.849 0.788 0.759 0.712 0.710 0.700 0.692 0.680 0.678 0.662

MLP 0.958 0.911 0.899 0.856 0.815 0.790 0.738 0.713 0.701 0.700 0.695 0.650

RAQP 0.923 0.915 0.899 0.895 0.875 0.858 0.820 0.799 0.765 0.725 0.710 0.700

Vlacho 0.865 0.840 0.825 0.788 0.760 0.749 0.715 0.706 0.681 0.655 0.615 0.610

LSTM 0.951 0.950 0.930 0.889 0.855 0.832 0.820 0.799 0.778 0.740 0.720 0.711

BLSTM 0.969 0.943 0.911 0.880 0.851 0.833 0.815 0.789 0.760 0.732 0.723 0.712

SLSTM 0.975 0.954 0.943 0.922 0.890 0.870 0.850 0.812 0.783 0.775 0.765 0.758

BlaSt 0.995 0.980 0.930 0.910 0.910 0.900 0.890 0.880 0.865 0.849 0.835 0.829
NO2 SVR 0.925 0.913 0.905 0.892 0.890 0.885 0.870 0.860 0.850 0.805 0.799 0.785

MLP 0.955 0.875 0.853 0.832 0.819 0.795 0.779 0.769 0.739 0.720 0.710 0.701

RAQP 0.969 0.960 0.930 0.920 0.895 0.870 0.860 0.848 0.795 0.785 0.768 0.720

Vlacho 0.895 0.868 0.840 0.835 0.823 0.810 0.805 0.797 0.769 0.740 0.739 0.723

LSTM 0.982 0.970 0.940 0.910 0.880 0.860 0.840 0.795 0.775 0.765 0.745 0.725

BLSTM 0.973 0.960 0.945 0.910 0.890 0.860 0.840 0.815 0.790 0.775 0.750 0.730

SLSTM 0.991 0.970 0.965 0.930 0.890 0.840 0.835 0.825 0.790 0.775 0.750 0.735

BlaSt 0.993 0.991 0.895 0.890 0.892 0.867 0.865 0.840 0.842 0.830 0.829 0.825
CO SVR 0.930 0.895 0.885 0.865 0.840 0.810 0.780 0.770 0.765 0.695 0.689 0.681

MLP 0.960 0.945 0.942 0.880 0.860 0.830 0.801 0.780 0.750 0.740 0.730 0.722

RAQP 0.960 0.940 0.911 0.890 0.873 0.853 0.843 0.832 0.810 0.780 0.765 0.740

Vlacho 0.872 0.859 0.858 0.849 0.843 0.840 0.832 0.811 0.805 0.801 0.790 0.779

LSTM 0.972 0.940 0.915 0.880 0.851 0.835 0.790 0.765 0.740 0.735 0.720 0.710

BLSTM 0.973 0.960 0.945 0.900 0.890 0.860 0.820 0.811 0.795 0.775 0.740 0.708

SLSTM 0.980 0.950 0.934 0.900 0.860 0.840 0.820 0.790 0.760 0.730 0.720 0.707

BlaSt 0.990 0.960 0.920 0.895 0.890 0.880 0.870 0.860 0.850 0.840 0.830 0.820
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insights into the mechanisms of chemical reactions 
and natural calamities. This collaboration could lead 
to the incorporation of domain-specific knowledge 
into the BlaSt model, enhancing its predictive capa-
bilities.

Hence, future research directions include integrating 
new data sources, developing hybrid models, work-
ing with environmental scientists, and using simulated 
datasets to improve the model’s ability to account for 
chemical reactions and natural disasters in air quality 
forecasting. The current version of the BlaSt model has 
limitations because relevant data is not readily avail-
able. We anticipate that these methods will greatly 
increase the BlaSt model’s accuracy and resilience in 
subsequent iterations.
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Table 6  Comparison of Precision between SVR [31], MLP [32], RAQP [34], Vlachogianni (Vlacho) [4], LSTM [35], BLSTM [36], SLSTM [37], 
and the proposed BlaSt Models

Bold values indicate the efficiency as well as the superior performance of our proposed model

APCs Method 1hr 2hr 3hr 4hr 5hr 6hr 7hr 8hr 9hr 10hr 11hr 12hr

PM2.5 SVR 0.938 0.904 0.892 0.862 0.802 0.798 0.753 0.735 0.710 0.697 0.655 0.633

MLP 0.958 0.927 0.895 0.856 0.823 0.790 0.770 0.758 0.733 0.714 0.710 0.703

RAQP 0.920 0.912 0.904 0.890 0.879 0.853 0.839 0.790 0.768 0.746 0.713 0.699

Vlacho 0.867 0.844 0.813 0.785 0.734 0.716 0.687 0.650 0.629 0.610 0.605 0.599

LSTM 0.948 0.923 0.919 0.893 0.863 0.833 0.813 0.793 0.753 0.740 0.725 0.711

BLSTM 0.966 0.920 0.890 0.865 0.843 0.825 0.815 0.793 0.773 0.743 0.723 0.703

SLSTM 0.979 0.954 0.934 0.913 0.880 0.863 0.825 0.801 0.790 0.765 0.743 0.723

BlaSt 0.995 0.975 0.930 0.910 0.896 0.892 0.880 0.860 0.860 0.850 0.840 0.828
NO2 SVR 0.915 0.913 0.903 0.888 0.883 0.873 0.863 0.857 0.843 0.798 0.783 0.778

MLP 0.900 0.878 0.838 0.832 0.808 0.783 0.760 0.753 0.724 0.720 0.703 0.701

RAQP 0.966 0.958 0.928 0.910 0.884 0.867 0.839 0.828 0.798 0.763 0.748 0.707

Vlacho 0.868 0.848 0.840 0.835 0.823 0.802 0.797 0.790 0.720 0.709 0.705 0.703

LSTM 0.963 0.943 0.940 0.905 0.884 0.856 0.847 0.784 0.760 0.751 0.737 0.718

BLSTM 0.975 0.954 0.930 0.905 0.884 0.857 0.837 0.800 0.789 0.760 0.746 0.718

SLSTM 0.980 0.978 0.950 0.925 0.883 0.856 0.837 0.810 0.790 0.772 0.747 0.728

BlaSt 0.992 0.980 0.903 0.889 0.884 0.874 0.865 0.858 0.848 0.843 0.838 0.836
CO SVR 0.923 0.889 0.869 0.854 0.834 0.808 0.778 0.762 0.720 0.697 0.688 0.678

MLP 0.952 0.946 0.888 0.858 0.828 0.798 0.778 0.760 0.739 0.730 0.712 0.706

RAQP 0.960 0.933 0.898 0.898 0.893 0.873 0.869 0.865 0.852 0.843 0.820 0.778

Vlacho 0.872 0.867 0.863 0.860 0.859 0.857 0.849 0.841 0.813 0.804 0.790 0.784

LSTM 0.973 0.934 0.900 0.875 0.843 0.820 0.787 0.750 0.738 0.722 0.717 0.703

BLSTM 0.989 0.954 0.930 0.905 0.884 0.856 0.817 0.800 0.780 0.760 0.737 0.708

SLSTM 0.980 0.954 0.933 0.908 0.864 0.839 0.817 0.790 0.760 0.730 0.717 0.701

BlaSt 0.995 0.965 0.925 0.897 0.896 0.886 0.878 0.865 0.857 0.847 0.836 0.834

Table 7  Comparison of Loss Metrics across Different Compared 
Models

Bold values indicate the efficiency as well as the superior performance of our 
proposed model

Model MSE MAE

SVR [31] 0.035 0.043

MLP [32] 0.032 0.041

RAQP [34] 0.030 0.039

Vlachogianni [4] 0.033 0.042

LSTM [35] 0.029 0.038

BLSTM [36] 0.027 0.036

SLSTM [37] 0.026 0.035

BlaSt (Proposed) 0.08 0.10
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